Potential Antineoplastics. 8. Synthesis and Pharmacology of 6-Methyl-2-thio-5-arylazouracils¹

H. G. GARG* AND R. A. SHARMA

Department of Chemistry, University of Roorkee, Roorkee, India

Received March 11, 1971

The antitumor properties associated with various thio analogs of uracil²⁻⁷ prompted us to synthesize new mg/kg per day) injections indicated neither any appreciable activity nor toxicity.

Experimental Section⁹

6-Methyl-2-thiouracil was prepd by a lit. route, mp $300-301^{\circ}$ (lit.¹⁰ mp 300°).

6-Methyl-2-thio-5-arylazouracil. Method A.—A soln of aryldiazonium salt from a substd aniline (0.01 mole) was slowly added to a well-cooled, stirred mixt of 6-methyl-2-thiouracil (0.01 mole) in 10% aq NaOH (10 ml) contg excess of AcONa. The mixt was kept at room temp for 2 days. The pptd solid was filtered off, washed (H₂O), and recrystd from EtOH-C₅H₃N (Table I).

Method B.--NH₂CSNH₂ (0.02 mole) was added to ethyl

	C		s of 6-Methyl-2-th	10-5-ARYLAZOURA	CILS	
No.	Х	Yield, %	Mp, °C	Color^a	Formula	Analyses ^b
1	4-Cl	55	168–170 dec	BnN	C ₁₁ H ₉ ClN ₄ OS	N, Cl
2	2-Br	50	$97-99 \deg$	DBnF	C ₁₁ H ₉ BrN4OS	N, Br
3	2-OH	60	$153\text{-}155\mathrm{dec}$	$\operatorname{RBn}N$	$C_{11}H_{10}N_4O_2S$	N, S
4	$2,4-Cl_2$	65	170 - 172	\mathbf{YN}	$C_{11}H_8Cl_2N_4OS$	N, Cl
5	$2,4-Br_2$	50	190-191	YN	$C_{11}H_8Br_2N_4OS$	N, Br
6	$2,5-Br_2$	52	$220-222 \operatorname{dec}$	YN	$C_{11}H_8Br_2N_4OS$	N, Br
7	$2,3-Me_2$	70	101-102	BnN	$C_{13}H_{14}N_4OS$	N, S
8	$2,5-Me_2$	65	100–101 dec	DRN	$C_{13}H_{14}N_4OS$	N, S
9	$2,6-Me_2$	55	104 - 105	ON	$C_{13}H_{14}N_4OS$	N, S
10	$3,4-Me_2$	60	167-168	RBnN	$C_{13}H_{24}N_4OS$	N, S
11	$3,5-Me_2$	60	227 – $228 \deg$	RBnN	$C_{13}H_{14}N_4OS$	N, S
12	2-Cl-6-Me	65	154–155 dec	OYN	Cu:HuClN4OS	N, Cl
13	$2,5-Cl_2-4-NO_2$	40	255 – $260 \deg$	\mathbf{YN}	$C_{11}H_7Cl_2N_5O_3S$	N, Cl
14	4-Cl-2,5-(MeO) ₂	55	$204205~\mathrm{dec}$	RBnP	$C_{13}H_{13}ClN_4O_3S$	N, S
15	5-Cl-2,4-(MeO) ₂	55	$248-249 \operatorname{dec}$	DRN	$C_{13}H_{13}ClN_4O_3S$	N, S
) huimhti	D. hammer D. doone F.	Ghann M. nos	dlar () anangar D	alatan Dunder	V mallow h Ampletical	data mana mit

TABLE I

^a B, bright; Bn, brown; D, deep; F, fibers; N, needle; O, orange; P, plates; R, red; Y, yellow. ^b Analytical data were within $\pm 0.4\%$ of the theoretical value.

structural congeners of potential medicinal interest, which are reported in the present communication.

Preliminary evaluation of these derivatives in the leukemia 1210 system⁸ by single and multiple-dose (400

* Address correspondence to this author at Harvard University Medical School, Laboratory for Carbohydrate Research, Massachusetts General Hospital, Boston, Mass. 02114.

(1) (a) Abstracted in part from the thesis submitted by R.A.S. in fulfilment for the degree of Doctor of Philosophy, University of Roorkee, Roorkee, India (b) Part 7. H. G. Garg and R. A. Sharma, *Can. J. Pharm. Sci.*, 6, 215 (1971).

- (2) C. Heidelberger, Annu. Rev. Pharmacol., 9, 115 (1967).
- (3) T. A. Khwaja and C. Heidelberger, J. Med. Chem., 10, 1066 (1967).
- (4) V. Skaric and B. Gaspert, J. Chem. Soc., 2631 (1969).
- (5) V. Skaric and B. Gaspert, Chem. Commun., 550 (1968).
- (6) R. W. Holley, J. A. Apgar, G. A. Everet, J. T. Madison, M. Marquisse,
 S. H. Merill, J. R. Penswick, and A. Zamir, *Science*, **147**, 1642 (1965).
- (7) M. N. Lippsett, J. Biol. Chem., 240, 3975 (1965).
 (8) Samening results were supplied by CCNSC of the National In

(8) Screening results were supplied by CCNSC of the National Institutes of Health. Bethesda, Md.

2-arylhydrazone-2,3-dioxobutyrate (0.02 mole) contg EtONa prepd from 1.2 g of Na and anhyd EtOH (50 ml). The resulting mixt was refluxed for 3 hr and left overnight. The sepd ppt was collected by filtration, washed (H₂O), and recrystd from EtOH- C_5C_5N .

Acknowledgments.—We are thankful to Professor W. U. Malik, Head of the Chemistry Department, for providing facilities for work, Dr. H. B. Wood for screening results, Dr. M. Gordon, SKF Laboratories, Philadelphia, Pa., for supply of some chemicals, and C.S.I.R., New Delhi for a Junior Research Fellowship held by (R.A.S.).

 $(9)\,$ Melting points were taken on a Kofler hot-stage type apparatus and are uncorrected.

(10) G. W. Anderson, I. F. Halverstadt, W. H. Miller, and R. O. Roblin, Jr., J. Amer. Chem. Soc., 67, 2197 (1945).